On adaptive Bayesian inference
نویسنده
چکیده
We study the rate of Bayesian consistency for hierarchical priors consisting of prior weights on a model index set and a prior on a density model for each choice of model index. Ghosal, Lember and Van der Vaart [2] have obtained general in-probability theorems on the rate of convergence of the resulting posterior distributions. We extend their results to almost sure assertions. As an application we study log spline densities with a finite number of models and obtain that the Bayes procedure achieves the optimal minimax rate n−γ/(2γ+1) of convergence if the true density of the observations belongs to the Hölder space Cγ [0, 1]. This strengthens a result in [1] [2]. We also study consistency of posterior distributions of the model index and give conditions ensuring that the posterior distributions concentrate their masses near the index of the best model.
منابع مشابه
Inference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملImplementation of Traditional (S-R)-Based PM Method with Bayesian Inference
In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...
متن کاملCost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کامل